Model Uncertainty

Massimo Marinacci

AXA-Bocconi Chair in Risk Department of Decision Sciences and IGIER Università Bocconi

University of Duisburg-Essen 25 May 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The problem

- Uncertainty and information are twin notions
- Uncertainty is indeed a form of partial / limited knowledge about the possible realizations of a phenomenon
 - toss a die: what face will come up?
- The first order of business is to frame the problem properly
- First key breakthrough: probabilities
- You can assign numbers to alternatives that quantify their relative likelihoods (and manipulate them according to some rules; probability calculus)

Probability: emergence and consolidation

Probability: emergence and consolidation

- 16th-17th centuries: probability and its calculus emerged with the works of Cardano, Huygens, Pascal et al.
- 18th-19th centuries: consolidation phase with the works of the Bernoullis, Gauss, Laplace et al.
- Laplace canon (1812) based on equally likely cases / alternatives: the probability of an event equals the number of "favorable" cases over their total number
- Later, the "equally likely" notion came to be viewed as an objective / physical feature (faces of a die, sides of a fair coin) until...

20th century: the Bayesian leap

20th century: the Bayesian leap

- 1920s: de Finetti and Ramsey freed probability of physics and rendered "equally likely" a subjective evaluation
- In doing so, they could attach probabilities to any event
 - "tomorrow it will rain"
 - "left wing parties will increase their votes in the next elections"

- Such probabilities (often called subjective) quantify the decision maker *degree of belief*
- In this way, all uncertainty can be probabilized: Bayesianism

	11
Nodel	Uncertainty

Road map

Probabilities: a (brief) historical detour

Types of uncertainty: physical vs epistemic

- Decision problems
 - toolbox
 - Savage setup
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models

Issues

- ambiguity / robustness makes optimal actions more prudent?
- ambiguity / robustness favors diversification?
- ambiguity / robustness affects valuation?
- model uncertainty resolves in the long run through learning?
- sources of uncertainty: a Pandora's box?

└─ Types of uncertainty

Types of uncertainty

All uncertainty relevant for decision making is ultimately subjective

- To paraphrase Protagoras, in decision problems "DMs are the measure of all things"
- Yet, in applications (especially with data) it is convenient to distinguish between *physical* and *epistemic* uncertainty

It traces back to Cournot and Poisson around 1840

- This distinction is a pragmatic *divide et impera* approach (combining objective and subjective views often regarded as dichotomic)
- Caveat, again: relevant for decision problems with data (not for one-of-a-kind decisions / events)

└─ Types of uncertainty: physical

Types of uncertainty: physical

- Examples of physical uncertainty: coin / dice tossing, measurement errors
- Physical uncertainty deals with variability in data (e.g., economic time series), because of their inherent randomness, measurement errors, omitted minor explanatory variables
- In applications, physical uncertainty characterizes data generating processes (DGP), i.e., probability models for data

└─ Types of uncertainty: physical

Types of uncertainty: physical

Physical uncertainty is irreducible

take either an urn with 50 white and 50 black balls or a fair coin, the probability of each alternative is 1/2

- There is nothing to learn and information is captured by conditioning
- Here probability is a measure of randomness / variability

└─ Types of uncertainty: epistemic

Types of uncertainty: epistemic

Epistemic uncertainty deals with the truth of propositions

- "tomorrow it will rain"
- "left wing parties will increase their votes in the next elections"
- "the parameter that characterizes the DGP has value x"
- "the composition of the urn is 50 white and 50 black balls"
- It is reducible through learning via Bayes' rule
 - take an urn with only black and white balls, in unknown (and so uncertain) proportion; repeated drawing enables to learn about such uncertainty and, hence, to reduce it
- Here probability is a measure of degree of belief

	11
Nodel	Uncertainty

Road map

- Probabilities: a (brief) historical detour
- Types of uncertainty: physical vs epistemic
- Decision problems
 - toolbox
 - Savage setup
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models

Issues

- ambiguity / robustness makes optimal actions more prudent?
- ambiguity / robustness favors diversification?
- ambiguity / robustness affects valuation?
- model uncertainty resolves in the long run through learning?
- sources of uncertainty: a Pandora's box?

Decision problems: the toolbox, I

Decision problems: the toolbox, I

A decision problem consists of

- a space A of actions
- a space *C* of material (e.g., monetary) consequences
- a space S of environment states
- \blacksquare a consequence function $\rho:A\times S\to C$ that details the consequence

$$m{c}=
ho\left(m{a},m{s}
ight)$$

of action a when state s obtains

Example (i): natural hazards

Example (i): natural hazards

Public officials have to decide whether or not to evacuate an area because of a possible earthquake

- A two actions a_0 (no evacuation) and a_1 (evacuation)
- C monetary consequences (damages to infrastructures and human casualties; Mercalli-type scale)
- *S* possible peak ground accelerations (Richter-type scale)
- $c = \rho(a, s)$ the monetary consequence of action a when state s obtains

Example (ii): monetary policy

Example (ii): monetary policy example

ECB or the FED have to decide some target level of inflation to control the economy unemployment and inflation

• Unemployment u and inflation π outcomes are connected to shocks (w, ε) and the policy *a* according to

$$u = \theta_0 + \theta_{1\pi}\pi + \theta_{1a}a + \theta_2w$$
$$\pi = a + \theta_3\varepsilon$$

 $\theta = (\theta_0, \theta_{1\pi}, \theta_{1a}, \theta_2, \theta_3)$ are five structural coefficients

- $\theta_{1\pi}$ and θ_{1a} are slope responses of unemployment to actual and planned inflation (e.g., Lucas-Sargent $\theta_{1a} = -\theta_{1\pi}$; Samuelson-Solow $\theta_{1,2} = 0$)
- \bullet θ_2 and θ_3 quantify shock volatilities
- \bullet θ_0 is the rate of unemployment that would (systematically) prevail without policy interventions

Example (ii): monetary policy

Example (ii): monetary policy

Here:

- A the target levels of inflation
- C the pairs $c = (u, \pi)$
- S has structural and random components

$$s = (w, \varepsilon, \theta) \in W imes E imes \Theta = S$$

The reduced form is

$$u = \theta_0 + (\theta_{1\pi} + \theta_{1a}) \mathbf{a} + \theta_{1\pi}\theta_3\varepsilon + \theta_2w$$
$$\pi = \mathbf{a} + \theta_3\varepsilon$$

and so ρ has the form

$$\rho(\mathbf{a}, \mathbf{w}, \varepsilon, \theta) = \begin{bmatrix} \theta_0 \\ 0 \end{bmatrix} + \mathbf{a} \begin{bmatrix} \theta_{1\pi} + \theta_{1a} \\ 1 \end{bmatrix} + \begin{bmatrix} \theta_2 & \theta_{1\pi}\theta_3 \\ 0 & \theta_3 \end{bmatrix} \begin{bmatrix} \mathbf{w} \\ \varepsilon \end{bmatrix}$$

Decision problems: the toolbox, II

Decision problems: the toolbox, II

- The quartet (A, S, C, ρ) is a decision form under uncertainty
- \blacksquare The decision maker (DM) has a preference \succeq over actions
 - we write $a \succeq b$ if the DM (weakly) prefers action a to action b

- The quintet (A, S, C, ρ, ≿) is a decision problem under uncertainty
- **D**Ms aim to select actions $\hat{a} \in A$ such that $\hat{a} \succeq a$ for all $a \in A$

Consequentialism

What matters about actions is not their label / name but the *consequences* that they determine when the different states obtain

Consequentialism: two actions that are realization equivalent

 i.e., that generate the same consequence in every state – are
 indifferent

Formally,

$$ho\left(extsf{a}, extsf{s}
ight)=
ho\left(extsf{b}, extsf{s}
ight) \quad orall extsf{s}\in \mathcal{S}\Longrightarrow extsf{a}\sim extsf{b}$$

or, equivalently,

$$\rho_{\rm a}=\rho_b\Longrightarrow {\rm a}\sim b$$

■ Here $\rho_a : S \to C$ is the section of ρ at a given by $\rho_a (s) = \rho (a, s)$

Savage setup

- Identify actions that are realization equivalent
- Formally, in place of actions we consider the maps $\mathbf{a}: S \to C$ that they induce as follows:

$$\mathbf{a}\left(s\right)=\rho_{\mathbf{a}}\left(s\right)\qquad\forall s\in S$$

- These maps are called *acts* they are state contingent consequences
- A denotes the collection of all the acts
- We can directly consider the preference \succeq on **A** by setting **a** \succeq **b** if and only if $a \succeq b$
- The quartet $(\mathbf{A}, S, C, \succeq)$ represents the decision problem a la Savage (1954), a reduced form of problem (A, S, C, ρ, \succeq)

Physical uncertainty: probability models

Physical uncertainty: probability models

- Because of their ex-ante structural information, DMs know that states are generated by a probability model *m* that belongs to a given subset *M* of Δ(*S*)
- Each m describes a possible DGP, and so it represents physical uncertainty (risk)
- DMs thus posit a model space M in addition to the state space S, a central tenet of classical statistics a la Neyman-Pearson-Wald
- When the model space is based on experts' advice, its nonsingleton nature may reflect different advice

Models: a toy example

Models: a toy example

Consider an urn with 90 Red, or Green, or Yellow balls

- DMs bet on the color of a ball drawn from the urn
- State space is $S = \{R, G, Y\}$
- Without any further information, $M = \Delta(\{R, G, Y\})$
- If DMs are told that 30 balls are red, then

$$M = \{m \in \Delta(\{R, G, Y\}) : m(R) = 1/3\}$$

└─Models and experts: probability of heart attack

Models and experts: probability of heart attack

Two DMs: John and Lisa are 70 years old

- smoke
- no blood pressure problem
- total cholesterol level 310 mg/dL
- HDL-C (good cholesterol) 45 mg/dL
- systolic blood pressure 130

What's the probability of a heart attack in the next 10 years?

Models and experts: probability of heart attack

Models and experts: probability of heart attack

Based on their data and medical models, experts say

Experts	John's <i>m</i>	Lisa's <i>m</i>
Mayo Clinic	25%	11%
National Cholesterol Education Program	27%	21%
American Heart Association	25%	11%
Medical College of Wisconsin	53%	27%
University of Maryland Heart Center	50%	27%

Table from Gilboa and Marinacci (2013)

Models: adding a consistency condition

Models: adding a consistency condition

- Cerreia, Maccheroni, Marinacci, Montrucchio (PNAS 2013) take the "physical" information M as a primitive and thus enrich the standard Savage framework
- DMs know that the true model m that generates observations belongs to the posited collection M
- In terms of preferences: betting behavior must be *consistent* with datum *M*. Formally,

$$m(F) \ge m(E) \quad \forall m \in M \Longrightarrow cFc' \succeq cEc'$$

where cFc' and cEc' are bets on events F and E, with $c \succ c'$

- The quintet (A, S, C, M, ≿) forms a Savage *classical* decision problem
- Remark: we abstract away from model misspecification issues

Classical subjective EU

Classical subjective EU

We show that a preference \succsim that satisfies Savage's axioms and the consistency condition is represented by the criterion

$$V(\mathbf{a}) = \sum_{m \in M} \left(\sum_{s \in S} u(\mathbf{a}(s)) m(s) \right) \mu(m)$$
(1)

That is, acts **a** and **b** are ranked as follows:

$$\mathbf{a} \succeq \mathbf{b} \Longleftrightarrow V(\mathbf{a}) \ge V(\mathbf{b})$$

Here

- u is a von Neumann-Morgenstern utility function that captures risk attitudes (i.e., attitudes toward physical uncertainty)
- µ is a subjective prior probability that quantifies the epistemic uncertainty about models; its support is included in M
- If M is based on the advice of different experts, the prior may reflect the different confidence that DMs have in each of them

Classical subjective EU

Classical subjective EU

We call this representation *Classical Subjective Expected Utility* because of the classical statistics tenet on which it relies

If we set

$$U(\mathbf{a},m) = \sum_{s \in S} u(\mathbf{a}(s)) m(s)$$

we can write the criterion as

$$V\left(\mathbf{a}
ight)=\sum_{m\in M}U\left(\mathbf{a},m
ight)\mu\left(m
ight)$$

In words, the criterion considers the expected utility U (a, m) of each possible DGP m, and averages them out according to the prior µ

Classical subjective EU

Classical subjective EU

• Each prior μ induces a *predictive probability* $\bar{\mu} \in \Delta(S)$ through reduction

$$\bar{\mu}(E) = \sum_{m \in M} m(E) \, \mu(m)$$

In turn, the predictive probability enables to rewrite the representation as

$$V(\mathbf{a}) = U(\mathbf{a}, \bar{\mu}) = \sum_{s \in S} u(\mathbf{a}(s)) \bar{\mu}(s)$$

This reduced form of V is the original Savage subjective EU representation

Classical subjective EU: some special cases

Classical subjective EU: some special cases

- If the support of µ is a singleton {m}, DMs subjectively (and so possibly wrongly) believe that m is the true model
 The criterion thus reduces to a Savage EU criterion U (a, m)
- If M is a singleton {m}, DMs know that m is the true model (a rational expectations tenet)
 - (i) There is no epistemic uncertainty, but only physical uncertainty (quantified by m)
 - (ii) The criterion again reduces to the EU representation $U(\mathbf{a}, m)$, but now interpreted as a von Neumann-Morgenstern criterion

Classical subjective EU: some special cases

Classical subjective EU: some special cases

- Classical subjective EU thus encompasses both the Savage and the von Neumann-Morgenstern representations
- If M ⊆ {δ_s : s ∈ S}, there is no physical uncertainty, but only epistemic uncertainty (quantified by μ). By identifying s with δ_s, wlog we can write μ (s) and so the criterion takes the form

$$V\left(\mathbf{a}
ight)=\sum v\left(\mathbf{a}\left(s
ight)
ight) \mu\left(s
ight)$$

where it is v that matters

Classical subjective EU: monetary policy example

Classical subjective EU: monetary policy example

Back to the monetary example

$$u = \theta_0 + \theta_{1\pi}\pi + \theta_{1a}a + \theta_2w$$
$$\pi = a + \theta_3\varepsilon$$

- Distribution q of shocks (w, ε)
- θ is deterministic, fixed
- Each model m corresponds to a shock distribution q and to a possible model economy θ

Classical subjective EU: monetary policy example

Classical subjective EU: monetary policy example

Suppose:

- (i) shocks distribution q is known
- (ii) model economy θ is unknown
 - Each model m is thus uniquely parametrized by θ, and so belief μ is directly on θ
 - The monetary policy problem is then

$$\max_{\mathbf{a}\in\mathbf{A}}V\left(\mathbf{a}\right) = \max_{\mathbf{a}\in\mathbf{A}}\sum_{\theta\in\Theta}\left(\sum_{\left(w,\varepsilon\right)\in W\times E}u\left(\mathbf{a}\left(w,\varepsilon,\theta\right)\right)q\left(w,\varepsilon\right)\right)\mu\left(\theta\right)$$

・ロト・雪ト・雪ト・雪・ 今日・

Classical subjective EU: portfolio

- Frictionless financial market with n assets
- Each with uncertain gross return r_i after one period
- a = (a₁, ..., a_n) ∈ Δ_{n-1} is vector of portfolio weights
 If initial wealth is 1,

$$ho\left(\mathsf{a},\mathsf{s}
ight)=\mathsf{a}\cdot\mathsf{s}=\sum_{i=1}^{n}\mathsf{a}_{i}\mathsf{r}_{i}$$

is the end-of-period wealth when $s = (r_1, ..., r_n)$ obtains

The portfolio decision problem is

$$\max_{a \in A} V(a) = \max_{a \in \Delta_{n-1}} \sum_{m \in M} \left(\sum_{s \in S} u(a \cdot s) m(s) \right) \mu(m)$$

Classical subjective EU: portfolio

- Two assets: a risk free with return r_f and a risky one with uncertain return r
- State space is the set R of all possible returns of the risky asset
- If *a* ∈ [0, 1] is the fraction of wealth invested in the risky asset, the portfolio problem becomes

$$\max_{a \in [0,1]} \sum_{m \in M} \left(\sum_{r \in R} u \left((1-a) r_{f} + ar \right) m \left(r \right) \right) \mu \left(m \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへ⊙

Classical subjective EU: portfolio

- Suppose $r r_f = \beta x + (1 \beta) \varepsilon$, with $\beta \in [0, 1]$
- x is a predictor for the excess return and ɛ is a shock with distribution q
- The higher β , the more predictable the excess return
- $s = (\varepsilon, \beta)$, where ε and β are its random and structural components
- Each model corresponds to a shock distribution q and to a predictability structure β

Classical subjective EU: portfolio

• If q is known, the only unknown is β :

$$\max_{a \in [0,1]} \int_{[0,1]} \left(\int_{E} u \left(r_{f} + a \left(\beta x + (1-\beta) \varepsilon \right) \right) dq \left(\varepsilon \right) \right) d\mu \left(\beta \right)$$

Here only predictability uncertainty

If q and ε are both unknown:

$$\max_{a \in [0,1]} \int_{\Delta(E) \times [0,1]} \left(\int_{E} u \left(r_{f} + a \left(\beta x + (1 - \beta) \varepsilon \right) \right) dq \left(\varepsilon \right) \right) d\mu \left(q, \beta \right)$$

Now both parametric and predictability uncertainty (Barberis, 2000)

	11
Nodel	Uncertainty

Road map

- Probabilities: a (brief) historical detour
- Types of uncertainty: physical vs epistemic
- Decision problems
 - toolbox
 - Savage setup
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models
- Issues
 - ambiguity / robustness makes optimal actions more prudent?
 - ambiguity / robustness favors diversification?
 - ambiguity / robustness affects valuation?
 - model uncertainty resolves in the long run through learning?
 - sources of uncertainty: a Pandora's box?

Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

- Physical and epistemic uncertainties need to be treated differently
- The standard expected utility model does not
- Since the 1990s, a strand of economic literature has been studying *ambiguity* / *Knightian uncertainty* / *robustness*
- We consider two approaches
 - non-Bayesian (Gilboa and Schmeidler, J. Math. Econ. 1989; Schmeidler, Econometrica 1989)
 - Bayesian (Klibanoff, Marinacci, Mukerji, *Econometrica* 2005)
- Both approaches broaden the scope of traditional EU analysis
- Normative focus (no behavioral biases or "mistakes"; see Gilboa and Marinacci, 2013)

Ambiguity / Robustness: the problem

Ambiguity / Robustness: the problem

- Intuition: betting on coins is greatly affected by whether or not coins are well tested
- Models correspond to possible biases of the coin
- By symmetry (uniform reduction), heads and tails are judged to be equally likely when betting on an untested coin, never flipped before
- The same probabilistic judgement holds for a well tested coin, flipped a number of times with an approximately equal proportion of heads to tails
- The evidence behind such judgements, and so the confidence in them, is dramatically different: ceteris paribus, DMs may well prefer to bet on tested (phys. unc.) rather than on untested coins (phys. & epist. unc.)
- Experimental evidence: Ellsberg paradox
Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

- A more robust rational behavior toward uncertainty emerges
- A more accurate / realistic account of how uncertainty affects valuation (e.g., uncertainty premia in market prices)
- Better understanding of exchange mechanics
 - a dark side of uncertainty: no-trade or small-trade results because of cumulative effects of physical and epistemic uncertainty; See the recent financial crisis
- Better calibration and quantitative exercises
 - applications in Finance, Macroeconomics, and Environmental Economics
- Better modelling of decision / policy making
 - applications in Risk Management; e.g., the otherwise elusive precautionary principle may fit within this framework

Ambiguity / Robustness: relevance

Ambiguity / Robustness: relevance

- Caveat: risk and model uncertainty can work in the same direction (magnification effects), as well as in different directions
- Magnification effects: large "uncertainty prices" with reasonable degrees of risk aversion
- Combination of sophisticated formal reasoning and empirical relevance

Ambiguity / Robustness: a Bayesian approach

Ambiguity / Robustness: a Bayesian approach

- A first distinction: DMs do not have attitudes toward uncertainty per se, but rather toward physical uncertainty and toward epistemic uncertainty
- Such attitudes may differ: typically DMs are more averse to epistemic than to physical uncertainty
- Inferred from lab experiments, but in the end it is an empirical question

Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

Suppose acts are monetary

Classical subjective EU representation can be written as

$$\mathcal{V}(\mathbf{a}) = \sum_{m \in M} U(\mathbf{a}, m) \mu(m)$$
$$= \sum_{m \in M} (u \circ u^{-1}) (U(\mathbf{a}, m)) \mu(m)$$
$$= \sum_{m \in M} u(c(\mathbf{a}, m)) \mu(m)$$

where $c(\mathbf{a}, m)$ is the certainty equivalent

$$c(\mathbf{a},m) = u^{-1}(U(\mathbf{a},m))$$

of act **a** under model *m*

• Recall that $U(\mathbf{a}, m) = \sum_{s \in S} u(\mathbf{a}(s)) m(s)$

Bayesian approach: a tacit assumption

Bayesian approach: a tacit assumption

The profile

$$\{c(\mathbf{a}, m) : m \in \operatorname{supp} \mu\}$$

is the scope of the model uncertainty that is relevant for the decision

In particular, DMs use the decision criterion

$$V(\mathbf{a}) = \sum_{m \in M} u(c(\mathbf{a}, m)) \mu(m)$$

to address model uncertainty, while

$$U(\mathbf{a}, m) = \sum_{s \in S} u(\mathbf{a}(s)) m(s)$$

is how DMs address the physical uncertainty that each model $\ensuremath{\textit{m}}$ features

 Identical attitudes toward physical and epistemic uncertainties, both modeled by the same function u Bayesian approach: representation

Bayesian approach: representation

- The smooth ambiguity model generalizes the representation by distinguishing such attitudes
- Acts are ranked according to the smooth (ambiguity) criterion

$$V(\mathbf{a}) = \sum_{m \in M} (\mathbf{v} \circ u^{-1}) (U(\mathbf{a}, m)) \mu(m)$$
$$= \sum_{m \in M} \mathbf{v} (c(\mathbf{a}, m)) \mu(m)$$

- The function $v : C \to \mathbb{R}$ represents attitudes toward model uncertainty
- A negative attitude toward model uncertainty is modelled by a concave v, interpreted as aversion to (mean preserving) spreads in certainty equivalents c (a, m)
- Ambiguity aversion amounts to a higher degree of aversion toward epistemic than toward physical uncertainty, i.e., a v more concave than u

Bayesian approach: representation

Bayesian approach: representation

• Setting $\phi = v \circ u^{-1}$, the smooth criterion can be written as

$$V\left(\mathsf{a}
ight) = \sum_{m \in M} \phi\left(U\left(\mathsf{a}, m
ight)
ight) \mu\left(m
ight)$$

- This formulation holds for any kind of acts (not just monetary)
- Ambiguity aversion corresponds to the concavity of ϕ
- If $\phi(x) = -e^{-\lambda x}$, it is a Bayesian version of the multiplier preferences of Hansen and Sargent (*AER* 2001, book 2008)
- Sources of uncertainty now matter (no longer "uncertainty is reduced to risk")

Bayesian approach: example

Bayesian approach: example

- Call I the tested coin and II the untested one
- Actions a₁ and a₁₁ are, respectively, bets of one euro on coin I and on coin II
- $S = \{H, T\} \times \{H, T\} = \{HH, HT, TH, TT\}$
- The next table summarizes the decision problem

$$\begin{array}{cccccccc} HH & HT & TH & TT \\ \mathbf{a}_{I} & 1 & 1 & 0 & 0 \\ \mathbf{a}_{II} & 1 & 0 & 1 & 0 \end{array}$$

Bayesian approach: example

Bayesian approach: example

Given the available information, it is natural to set

$$M = \left\{ m \in \Delta(S) : m(HH \cup HT) = m(TH \cup TT) = \frac{1}{2} \right\}$$

 M consists of all models that give probability 1/2 to either outcome for the tested coin; no specific probability is, instead, assigned to the outcome of the untested coin

Bayesian approach: example

Bayesian approach: example

Normalize u(1) = 1 and u(0) = 0, so that

$$V(\mathbf{a}_{I}) = \sum_{m \in M} \phi(m(HH \cup HT)) d\mu(m) = \phi\left(\frac{1}{2}\right)$$

1...

and

$$V\left(\mathbf{a}_{II}
ight)=\sum_{m\in\mathcal{M}}\phi\left(m\left(HH\cup TH
ight)
ight)d\mu\left(m
ight)$$

• If μ is uniform, $V(\mathbf{a}_{II}) = \int_0^1 \phi(x) \, dx$. If ϕ is strictly concave, by the Jensen inequality we then have

$$V(\mathbf{a}_{II}) = \int_0^1 \phi(x) \, dx < \phi\left(\int_0^1 x \, dx\right) = \phi\left(\frac{1}{2}\right) = V(\mathbf{a}_I)$$

Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

Under extreme ambiguity aversion (e.g., as λ ↑ ∞ when φ(x) = -e^{-λx}), the smooth ambiguity criterion in the limit reduces to the maxmin criterion

$$V(\mathbf{a}) = \min_{m \in \text{supp } \mu} \sum_{s \in S} u(\mathbf{a}(s)) m(s)$$

- Pessimistic criterion: DMs maxminimize over all possible probability models in the support of µ
- The prior μ just selects which models in M are relevant
- Waldean version of Gilboa and Schmeidler (*J. Math. Econ.* 1989) seminal maxmin decision model

Bayesian approach: extreme attitudes and maxmin

Bayesian approach: extreme attitudes and maxmin

 If supp µ = M, the prior is actually irrelevant and we get back to the Wald (1950) maxmin criterion

$$V(\mathbf{a}) = \min_{m \in M} \sum_{s \in S} u(\mathbf{a}(s)) m(s)$$

When *M* consists of all possible models, it reduces to the statewise maxmin criterion

$$V(\mathbf{a}) = \min_{s \in S} u(\mathbf{a}(s))$$

A very pessimistic (paranoid?) criterion: probabilities, of any sort, do not play any role (Arrow-Hurwicz decision under ignorance)

Precautionary principle

Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

In a frictionless market a primary asset y that pays y(s) if state s obtains, is traded

- Its market price is p
- Investors may trade x units of the asset (buy if x > 0, sell if x < 0, no trade if x = 0)</p>

- State contingent payoff is $\mathbf{x}(s) = y(s)x px$
- Trade occurs only if $V(\mathbf{x}) \geq V(\mathbf{0}) = 0$

Bayesian approach: extreme attitudes and no trade

Bayesian approach: extreme attitudes and no trade

Dow and Werlang (*Econometrica* 1992): under maxmin behavior, there is no trade on asset y whenever

$$\min_{n \in \text{supp } \mu} \mathbb{E}_{m}(y)
(2)$$

- High ambiguity aversion may freeze markets
- Inequality (2) requires supp µ to be nonsingleton: the result requires ambiguity
- More generally: a lower trade volume on asset y corresponds to a higher ambiguity aversion (e.g., higher λ when $\phi(x) = -e^{-\lambda x}$) if (2) holds
- Bottom line: it reinforces the idea that uncertainty can be an impediment to trade

Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

- The smooth ambiguity criterion admits a simple quadratic approximation that leads to a generalization of the classic mean-variance model (Maccheroni, Marinacci, Ruffino, *Econometrica* 2013)
- The robust mean-variance rule ranks acts a by

$$\mathrm{E}_{\bar{\mu}}\left(\mathbf{a}\right)-\frac{\lambda}{2}\sigma_{\bar{\mu}}^{2}\left(\mathbf{a}\right)-\frac{\theta}{2}\sigma_{\mu}^{2}\left(\mathrm{E}\left(\mathbf{a}\right)\right)$$

where λ and θ are positive coefficients

• Here $\mathrm{E}(\mathbf{a}): M \to \mathbb{R}$ is the random variable

$$m \mapsto \mathrm{E}_{m}(\mathbf{a}) = \sum_{s \in S} \mathbf{a}(s) m(s)$$

that associates the EV of act **a** under each possible model m• $\sigma_{\mu}^{2}(\mathbf{E}(\mathbf{a}))$ is its variance Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

The robust mean-variance rule

$$\mathrm{E}_{\bar{\mu}}\left(\mathbf{a}\right)-\frac{\lambda}{2}\sigma_{\bar{\mu}}^{2}\left(\mathbf{a}\right)-\frac{\theta}{2}\sigma_{\mu}^{2}\left(\mathrm{E}\left(\mathbf{a}\right)\right)$$

is determined by the three parameters λ , θ , and μ . When $\theta = 0$ we return to the usual mean-variance rule

- The taste parameters λ and θ model DMs' attitudes toward physical and epistemic uncertainty, resp.
- Higher values of these parameters correspond to stronger negative attitudes

Bayesian approach: quadratic approximation

Bayesian approach: quadratic approximation

- The information parameter μ determines the variances σ²_μ (a) and σ²_μ (E (a)) that measure the physical and epistemic uncertainty that DMs perceive in the evaluation of act a
- Higher values of these variances correspond to a DM's poorer information regarding such uncertainties

$$\frac{\lambda}{2}\sigma_{\bar{\mu}}^{2}\left(\mathbf{a}\right)$$

Novelty: the ambiguity premium is

$$\frac{\theta}{2}\sigma_{\mu}^{2}\left(\mathbf{E}(\mathbf{b})\right)$$

Ambiguity / Robustness: a non Bayesian approach

Ambiguity / Robustness: a non Bayesian approach

- Need to relax the requirement that a single number quantifies beliefs: the multiple (prior) probabilities model
- DMs may not have enough information to quantify their beliefs through a single probability, but need a set of them
- Expected utility is computed with respect to each probability and DMs act according to the minimum among such expected utilities

Non Bayesian approach: representation

Non Bayesian approach: representation

- Epistemic uncertainty quantified by a set C of priors
- DMs use the criterion

- DMs consider the least among all the EU determined by each prior in C
- The predictive form (3) is the original version axiomatized by Gilboa and Schmeidler (*J. Math. Econ.* 1989)

Non Bayesian approach: comments

Non Bayesian approach: comments

- This criterion is less extreme than it may appear at a first glance
- The set C incorporates
 - the attitude toward ambiguity, a taste component
 - its perception, an information component
- A smaller set C may reflect both better information i.e., a lower perception of ambiguity – and / or a less averse uncertainty attitude
- In sum, the size of C does not reflect just information, but taste as well

Non Bayesian approach: comments

Non Bayesian approach: comments

- With singletons $C = \{\mu\}$ we return to the classical subjective EU criterion
- When C consists of all possible priors on *M*, we return to the Wald maxmin criterion

$$\min_{m \in M} \sum_{s \in S} u(\mathbf{a}) m(s)$$

No trade results (kinks)

Non Bayesian approach: variational model

Non Bayesian approach: variational model

- In the maxmin model, a prior µ is either "in" or "out" of the set C
- Maccheroni, Marinacci, Rustichini (*Econometrica* 2006): general variational representation

$$V\left(\mathbf{a}\right) = \inf_{\mu \in \Delta(M)} \left(\sum_{m \in M} \left(\sum_{s \in S} u\left(\mathbf{a}\left(s\right)\right) m\left(s\right) \right) \mu(m) + c\left(\mu\right) \right)$$

where $c(\mu)$ is a convex function that weights each prior μ If c is the dichotomic function given by

$$\delta_{\mathsf{C}}\left(\mu
ight) = \left\{ egin{array}{cc} 0 & ext{if } \mu \in \mathsf{C} \ +\infty & ext{else} \end{array}
ight.$$

we get back to the maxmin model with set of priors C $(1 + 1)^{-1} + (1 + 1)^{-1$

Non Bayesian approach: multiplier model

Non Bayesian approach: multiplier model

If c is given by the relative entropy $R(\mu||\nu)$, where ν is a reference prior, we get the multiplier model

$$V(\mathbf{a}) = \inf_{\mu \in \Delta(M)} \left(\sum_{m \in M} \left(\sum_{s \in S} u(\mathbf{a}(s)) m(s) \right) \mu(m) + \alpha R(\mu || \nu) \right)$$

popularized by Hansen and Sargent in their studies on robustness in Macroeconomics

 Also the mean-variance model is variational, with c given by a Gini index

Model	Uncertainty	,
1110 0 0	oncorcannej	

Road map

- Probabilities: a (brief) historical detour
- Types of uncertainty: physical vs epistemic
- Decision problems
 - toolbox
 - Savage setup
 - classical subjective expected utility
- Model uncertainty: ambiguity / robustness models

Issues

- ambiguity / robustness makes optimal actions more prudent?
- ambiguity / robustness favors diversification?
- ambiguity / robustness affects valuation?
- model uncertainty resolves in the long run through learning?
- sources of uncertainty: a Pandora's box?

Optima: more prudent?

Does ambiguity /robustness make optimal actions more prudent?

- It is a robustness requirement on optima
- But this does not necessarily mean "more prudent"
- Folk wisdom: sometimes "the best defense is a good offense"

Optima: more prudent?

Consider the optimum problem

$$\max_{\mathbf{a}\in\mathbf{A}}\sum_{m\in\mathcal{M}}\phi\left(U\left(\mathbf{a},m\right)\right)\mu\left(m\right)$$

where ϕ and u are twice differentiable, with $\phi',\,u'>0$ and $\phi'',\,u''<0$

a Recall that $U(\mathbf{a}, m) = \sum_{s \in S} u(\mathbf{a}(s)) m(s)$

Optima: more prudent?

• There is a "tilted" prior $\hat{\mu}$, equivalent to μ , such that problems

$$\max_{\mathbf{a}\in\mathbf{A}}\sum_{m\in M}\phi\left(U\left(\mathbf{a},m\right)\right)\mu\left(m\right)\quad\text{and}\quad\max_{\mathbf{a}\in\mathbf{A}}\sum_{m\in M}U\left(\mathbf{a},m\right)\hat{\mu}\left(m\right)$$

have the same solution ${\bf \hat{a}}$

Here

$$\hat{\mu}(m) = \frac{\phi'(U(\mathbf{a}, m))}{\sum_{m \in M} \phi'(U(\mathbf{a}, m)) \mu(m)} \mu(m)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Optima: more prudent?

- ϕ' is decreasing
- *µ* thus alters *µ* by shifting weight to models *m* with a lower
 U(**a**, *m*)
- **a** solves EU problem ma×_{a∈A} ∑_{m∈M} U (**a**, m) µ̂ (m) despite µ̂ handicaps **a** by overweighting its cons over its pros
- **a** is a robust solution when compared to the solution of the ordinary EU problem max_{a∈A} ∑_{m∈M} U (**a**, m) µ (m)
- In sum, ambiguity aversion can be interpreted as a desire for robustness on optima

Optima: more prudent?

Back to the monetary policy example. Define $(\mathbf{u}, \boldsymbol{\pi})$ by

$$\begin{split} \mathbf{u} & (\mathbf{a}, \mathbf{w}, \varepsilon, \theta) = \theta_0 + (\theta_{1\pi} + \theta_{1a}) \mathbf{a} + \theta_{1\pi} \theta_3 \varepsilon + \theta_2 \mathbf{w} \\ \pi & (\mathbf{a}, \mathbf{w}, \varepsilon, \theta) = \mathbf{a} + \theta_3 \varepsilon \end{split}$$

$$\rho\left(\mathbf{a},\mathbf{w},\varepsilon,\theta\right)=\left(\mathbf{u}\left(\mathbf{a},\mathbf{w},\varepsilon,\theta\right),\boldsymbol{\pi}\left(\mathbf{a},\mathbf{w},\varepsilon,\theta\right)\right)$$

Assumptions:

- shocks are uncorrelated with zero mean and unit variance wrt the known distribution q
- the policy multiplier is negative, i.e., $\theta_{1\pi} + \theta_{1a} \leq 0$
- coefficients $\theta_{1\pi}$, θ_2 and θ_3 are known

Optima: more prudent?

- Linear quadratic policy framework
- Objective function V(a) is

$$\sum_{\theta} \phi \left(-\sum_{(w,\varepsilon)} \left(\mathbf{u}^{2} \left(\mathbf{a}, w, \varepsilon, \theta \right) + \pi^{2} \left(\mathbf{a}, w, \varepsilon, \theta \right) \right) q \left(w, \varepsilon \right) \right) \mu \left(\theta \right)$$

where $\theta = (heta_0, heta_{1a}) \in \Theta$

Optima: more prudent?

If true model economy θ* is known, the (objectively) optimal policy is

$$\mathbf{a}^{o}=B\left(heta^{st}
ight) =-rac{ heta_{0}^{st}\left(heta_{1\pi}^{st}+ heta_{1a}^{st}
ight) }{1+\left(heta_{1\pi}^{st}+ heta_{1a}^{st}
ight) ^{2}}$$

where $B(\cdot)$ is the best reply function

If not, the optimal policy is

$$\hat{\mathbf{a}} = B\left(\hat{\mu}\right) = -\frac{\mathrm{E}_{\hat{\mu}}\left(\theta_{0}\right)\left(\theta_{1\pi}^{*} + \mathrm{E}_{\hat{\mu}}\left(\theta_{1a}\right)\right) + Cov_{\hat{\mu}}\left(\theta_{0}, \theta_{1a}\right)}{1 + \left(\theta_{1\pi}^{*} + \mathrm{E}_{\hat{\mu}}\left(\theta_{1a}\right)\right)^{2} + V_{\hat{\mu}}\left(\theta_{1a}\right)}$$

where B (·) is the EU best reply function wrt the tilted prior µ̂
Policy B (µ̂) is the robust version of policy B (µ) that takes into account ambiguity aversion

Optima: more prudent?

Suppose the monetary authority is dogmatic on θ_{1a} , i.e., there is a value $\bar{\theta}_{1a}$ such that $\mu(\bar{\theta}_{1a}) = 1$. For example:

•
$$\bar{\theta}_{1a} = 0$$
 when dogmatic on a Samuelson-Solow economy
• $\bar{\theta}_{1a} = -\theta_{1\pi}^*$ when dogmatic on a Lucas-Sargent economy

Since $\hat{\mu}$ and μ are equivalent, also $\hat{\mu} \left(\bar{\theta}_{1a} \right) = 1$. Hence,

$$B\left(\hat{\mu}\right) \leq B\left(\mu\right) \Longleftrightarrow \mathrm{E}_{\hat{\mu}}\left(\theta_{0}\right) \leq \mathrm{E}_{\mu}\left(\theta_{0}\right)$$

Optima: more prudent?

- The robust policy is more prudent as long as the tilted expected value of θ₀ is lower
- When Lucas-Sargent dogmatic, B (µ) = B (µ̂) = 0 and so the zero-target-inflation policy is optimal, regardless of any uncertainty
- On "tilted" prudence and ambiguity / robustness
 - Taboga (*FinRL* 2005), Hansen (*AER* 2007), Hansen and Sargent (book 2008), Gollier (*RES* 2011), Collard, Mukerji, Sheppard, Tallon (2012)

Diversification: public policy

Diversification

- Public officials have to decide which treatment t ∈ T should be administered
- Homogeneous population (same covariate)
- Policy is a distribution $a \in \Delta(T)$, where a(t) is the fraction of the population under treatment t
- c(t, s) is the outcome of treatment t when state s obtains

• $\rho(a, s) = \sum_{t \in T} c(t, s) a(t)$ is the average outcome

Diversification: public policy

Diversification

Policy problem is

$$\max_{a \in \Delta(T)} V(a) = \max_{a \in \Delta(T)} \sum_{m \in M} \phi\left(\sum_{s \in S} \rho(a, s) m(s)\right) \mu(m)$$
$$= \max_{a \in \Delta(T)} \sum_{m \in M} \phi\left(\sum_{t \in T} \bar{c}_m(t) a(t)\right) \mu(m)$$

where $\bar{c}_{m}(t) = \sum_{s \in S} c(t, s) m(s)$ is the expected outcome of treatment t under model m

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Diversification: public policy

Diversification

• Binary case $T = \{t_0, t_1\}$

■ Policy a ∈ [0, 1] is the fraction of the population under treatment t₁

- Fractional treatment (and so diversification) if $a \in (0, 1)$
- Policy problem is

$$\max_{a \in [0,1]} V\left(a\right) = \max_{a \in [0,1]} \mathrm{E}_{\mu} \phi\left(\left(1-a\right) \bar{c}_{m}\left(t_{0}\right) + a \bar{c}_{m}\left(t_{1}\right)\right)$$

- If ϕ is linear, a = 0 or a = 1 unless $\bar{c}_{\bar{\mu}}(t_0) = \bar{c}_{\bar{\mu}}(t_1)$, in which case all $a \in [0, 1]$ are optimal
- Under subjective EU fractional treatment is not optimal
- To justify fractional treatment, in a series of papers Charles Manski considered maxmin regret
Diversification

Suppose ϕ is quadratic

• Set $d_m = \bar{c}_m(t_0) - \bar{c}_m(t_1)$. The optimal policy is

$$\hat{\boldsymbol{a}} = \frac{\mathrm{E}_{\mu}\mathrm{E}_{m}\bar{\boldsymbol{c}}_{m}\left(\boldsymbol{t}_{0}\right)\boldsymbol{d}_{m}}{\mathrm{E}_{\mu}\boldsymbol{d}_{m}^{2}}$$

- $\hat{a} \in (0,1)$ if and only if $|V\left(0\right) V\left(1\right)| < \mathrm{E}_{\mu}d_{m}^{2}$
- Fractional treatment may thus emerge when ϕ nonlinear
- In fact, if ϕ concave we have the following convexity property:

$$a \sim b \Longrightarrow \alpha a + (1 - \alpha) b \succeq b \qquad \forall \alpha \in [0, 1]$$

 First noted by David Schmeidler, who called this property uncertainty aversion

Valuation: static asset pricing

- Two-period economy, with a single consumption good
- Agents decide today c₀ and tomorrow c₁, which is contingent on the state s ∈ S = {s₁, ..., s_k} that tomorrow obtains
- The true probability model is $m^* \in M$
- Consumption pairs $c = (c_0, c_1)$ are ranked by

$$V(c) = \mathrm{E}_{\mu}\phi\left(\mathrm{E}_{m}u\left(c\right)\right)$$

Valuation: static asset pricing

- Agents have an endowment in the two periods, but can also fund their consumption decisions by trading in a frictionless financial market
- A primary asset

$$y = (y_1, \ldots, y_k)$$

pays out y_i if state s_i obtains

The Law of one price holds

Valuation: static asset pricing

If the true model m* is known, we have the classic pricing formula

$$p_{y} = \mathrm{E}_{m^{*}}\left(rac{rac{\partial u}{\partial c_{1}}\left(\hat{c}
ight)}{rac{\partial u}{\partial c_{0}}\left(\hat{c}
ight)}y
ight)$$

- Risk attitudes affect asset pricing
- In general, we have

$$p_{y} = \mathrm{E}_{\mu} \left(\frac{\phi'\left(\mathrm{E}_{m} u\left(\hat{c}\right)\right)}{\mathrm{E}_{\mu} \phi'\left(\mathrm{E}_{m} u\left(\hat{c}\right)\right)} \mathrm{E}_{m} \left(\frac{\frac{\partial u}{\partial c_{1}}\left(\hat{c}\right)}{\frac{\partial u}{\partial c_{0}}\left(\hat{c}\right)} y \right) \right)$$

- Both risk and ambiguity attitudes affect pricing
- In a series of papers, Hansen and Sargent study similar formulas and their relevance for some asset pricing empirical puzzles

Valuation: static asset pricing

- Suppose the risk free asset is traded, with (gross) return r_f
- The classic pricing formula can be written as

$$p_{y}=\frac{1}{r_{f}}\mathrm{E}_{\hat{m}^{*}}\left(y\right)$$

where \hat{m}^* is the, equivalent, risk neutral version of m^* , given by

$$\hat{m}_{i}^{*}=rac{rac{\partial u}{\partial c_{i1}}\left(\hat{c}
ight)}{\mathrm{E}_{m^{*}}rac{\partial u}{\partial c_{1}}\left(\hat{c}
ight)}m_{i}^{*}$$

Valuation: static asset pricing

- Adjustments for risk, ambiguity and model uncertainty
- Risk: \hat{m} is the risk neutral version of model m given by

$$\hat{m}_{i}=rac{rac{\partial u}{\partial c_{i1}}\left(\hat{c}
ight)}{\mathrm{E}_{m^{*}}rac{\partial u}{\partial c_{1}}\left(\hat{c}
ight)}m_{i}$$

Ambiguity: $\hat{\mu}$ is the ambiguity neutral version of prior μ given by

$$\hat{\mu}(m) = \frac{\phi'(\mathbf{E}_m u(\hat{c}))}{\mathbf{E}_{\mu}(\phi'(\mathbf{E}_m u(\hat{c})))} \mu(m)$$

• Model uncertainty: $\tilde{\mu}$ is given by

$$\tilde{\mu}(m) = \frac{\mathrm{E}_{m}\frac{\partial u}{\partial c_{1}}\left(\hat{c}\right)}{\mathrm{E}_{\hat{\mu}}\mathrm{E}_{m}\frac{\partial u}{\partial c_{1}}\left(\hat{c}\right)}\hat{\mu}(m)$$

Valuation: static asset pricing

- $\hat{m} = m$ under risk neutrality (*u* linear)
- $\hat{\mu} = \mu$ under ambiguity neutrality (ϕ linear), though possibly $\tilde{\mu} \neq \mu$
- $\tilde{\mu} = \hat{\mu} = \mu$ when the expected marginal utility $E_m \frac{\partial u}{\partial c_1}(\hat{c})$ is constant, and so model uncertainty is immaterial

Valuation: static asset pricing

Uncertainty neutral pricing is given by

$$\rho_{w} = \frac{1}{r_{f}} \mathrm{E}_{\tilde{\mu}} \left(\mathrm{E}_{\hat{m}} w \right) = \frac{1}{r_{f}} \mathrm{E}_{\overline{\tilde{\mu}}} \left(w \right)$$

where $\overline{\tilde{\mu}}_{i} = \sum_{m \in M} \hat{m}_{i} \tilde{\mu}(m)$

- $\overline{ ilde{\mu}}$ is the uncertainty neutral measure on S
- It involves expected marginal utilities, and so in principle it can be estimated from consumption data

Long run: is model uncertainty still relevant?

Does model uncertainty resolve in the long run through learning?

- Consider a recurrent decision problem, in a stationary environment
- What DMs observe depend on the actions they choose
- If the ex post feedback that they receive is partial, a partial identification problem (and so model uncertainty) arises
- It persists at steady state, after DMs learned everything they could (based on the long run frequencies of observations caused by their actions)

Long run: is model uncertainty still relevant?

- Organizing principle: self-confirming equilibrium
 - introduced in the early 1990s in the works of Battigalli, Fudenberg and Levine, and Kalai and Lehrer
- DMs best reply to the evidence they collected through their actions
- Steady state actions have to be best replies given the evidence they generated
- The true model being unknown (model uncertainty), prior beliefs might well be not correct
- No longer in a Nash setup where actions are best replies to correct beliefs

Long run: is model uncertainty still relevant?

Consider an urn with 90 Red, or Green, or Yellow balls

- DMs keep betting on Red
- Partial feedback: DMs observe whether or not they won (but not the drawn color)
- Suppose the long run frequency of "wins" is 1/3
- The proportion of Red balls is learned (it is 1/3, i.e., 30 Red balls)
- The proportions of Green and Yellow balls remain unknown
- Partial identification at steady state
- If DMs had observed the colors drawn (perfect feedback), they would have learned the true model (i.e., all colors' proportions)

Long run: is model uncertainty still relevant?

- Steady state betting on Red is only risky (DMs learned the proportion of red balls)
- Steady state betting on other colors remains ambiguous (DMs did not learn anything on their proportions)
- A status quo bias (betting on Red) emerges, captured through ambiguity

Formally, betting on Red is self-confirming

Long run: is model uncertainty still relevant?

- In general, the bias favors tested alternatives over untested ones
- The higher ambiguity aversion, the higher the bias
- The bias might well trap DMs in self-confirming, but suboptimal (wrt to the true model), actions
- For example, if in the previous urn there are 50 Green balls, the (objectively) optimal action would be to bet on Green, not on Red

Long run: is model uncertainty still relevant?

- In a Game Theoretic setting, this causes a penalization of deviations. As a result, the set of self-confirming equilibria expands (Battigalli, Cerreia, Maccheroni, Marinacci, AER 2015)
- Folk wisdom I: "better the devil you know than the devil you do not know"
- Folk wisdom II: "chi lascia la via vecchia per la via nuova, sa quel che perde ma non sa quel che trova" ("those who leave the old road for a new one, know what they leave but do not know what they will find")

Long run: a glimpse into learning

Long run: a glimpse to learning

- Consider a decision problem over time
- Experimentation is possible
- The degree of ambiguity aversion and of patience affect its option value
- The higher the degree of patience, the higher the value
- The higher the degree of ambiguity aversion, the lower the value
- Ongoing research on this trade-off (Battigalli, Cerreia, Francetich, Maccheroni, Marinacci 2015)

└─Sources of uncertainty

Sources of uncertainty

- We made a distinction between attitudes toward physical and epistemic uncertainty
- A more general issue: do attitudes toward different uncertainties differ?
- Source contingent outcomes: Do DMs regard outcomes (even monetary) that depend on different sources as different economic objects?

Ongoing research on this subtle topic

Epilogue

- In decision problems with data, it is important to distinguish physical and epistemic uncertainty
- Traditional EU reduces epistemic uncertainty to physical uncertainty, and so it ignores the distinction
- Experimental and empirical evidence suggest that the distinction is relevant and may affect valuation
- We presented two approaches, one Bayesian and one not
- For different applications, different approaches may be most appropriate
- Traditional EU is the benchmark
- Yet, adding ambiguity broadens the scope (empirical and theoretical) and the robustness of results